
International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

1

APPLICATION OF HADOOP MAPREDUCE TECHNIQUE TO VIRTUAL

DATABASE SYSTEM DESIGN

Neha Tiwari

Rahul Pandita

Nisha Chhatwani

Divyakalpa Patil

Prof. N.B.Kadu

PREC, Loni, India.

ABSTRACT- Today in the world of cloud and grid computing integration of data from

heterogeneous databases is inevitable. Virtual Database Technology (VDB) is one of the

effective solutions for integration of data from heterogeneous sources. This will become

complex when size of the database is very large. MapReduce is a new framework specifically

designed for processing huge datasets on distributed sources. Apache’s Hadoop is an

implementation of MapReduce. Currently Hadoop has been applied successfully for file

based datasets. This paper proposes to utilize the parallel and distributed processing

capability of Hadoop MapReduce for handling heterogeneous query execution on large

datasets. So, Virtual Database Engine built on top of this will result in effective high

performance distributed data integration.

KEYWORDS- Database integration, Virtual Database Technology, Hadoop MapReduce,

heterogeneous databases, query optimization.

INTRODUCTION

Today for distributed systems like Cloud and Grid data integration from heterogeneous data

sources is unavoidable. The data is made available in several structured and semistructured

formats (HTML, XML, etc), as well as in tables, spreadsheets and statistical tools. Integration

of these data is carried out at a tremendous cost, often at 35% of IT budget.

Virtual database technology is one of the effective solutions for integration of data from

heterogeneous databases which is developed by Junglee Corporation. This technology is used

in many data integration applications like yahoo, teiid, talend, Datastage etc. In VBD the

users can manipulate information as if they were stored together in a single place with a

single interface whereas it may actually be stored in multiple, possibly heterogeneous places.

MapReduce is a new framework specifically designed for processing huge datasets on

distributed sources. Apache’s Hadoop is an implementation of MapReduce. Currently

Hadoop has been applied successfully for file based datasets. The execution engine that is

developed on top of Hadoop applies Map and Reduce techniques to break down the parsing

and execution stages for parallel and distributed processing. Moreover MapReduce will

provide the fault tolerance, scalability and reliability because its library is designed to help

process very large amount of data using hundred and thousands of machine, which must

tolerate the machine failure. This paper proposes to utilize the parallel and distributed

processing capability of Hadoop MapReduce for handling heterogeneous query execution on

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

2

large datasets. So Virtual Database Engine built on top of this will result in effective high

performance distributed data integration.

VIRTUAL DATABASE SYSTEM

A virtual database (or VDB) is a container for components used to integrate data from

multiple data sources, so that they can be accessed in an integrated manner through a single,

uniform API. The standard VDB structure is shown in the Fig. 1. It consists of four

components. The Mapper, Publisher, Executor and Wrapper [1][2].

Figure: Virtual Database System-General structure

1) Publisher: The publisher provides a query language for the users to access the system.

2) Mapper: The mapper needs the Metadata information. The query given by the users

are processed and decomposed into sub queries [12] according to the actual data

retrieval instructions defined in the Metadata [3].

3) Executor: An Executor provides an abstraction layer between Query Engine and

physical data source that knows how to convert issued user query commands into

source specific commands and execute them using the wrapper. It also has

intelligence logic to convert the result data that came from the physical source into a

form that Query engine is expecting.

4) Wrapper: A wrapper provides the connectivity to the physical data source. This also

provides way to natively issue commands and gather results. A wrapper can be a

RDBMS data source, Web Service, text file, connection to main frame etc.

5) Metadata: Metadata is data that describes a specific item of content and where it is

located. Metadata is capturing important information about the enterprise

environment, data, and business logic to accelerate development, drive integration

procedures, and improve integration efficiency [4]. Metadata captures all technical,

operational, and business metadata in real time in a single open repository. This

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

3

repository ensures that metadata is always up to date, accurate, complete, and

available.

Following figure shows the extraction of data from heterogeneous data sources using VDB.

Figure: Extracting data using VDB

The most common interface to VBD is that of a relational database management system,

effected through methods such as the Open Database Connectivity (ODBC) method, the

Structured Query Language and the relational database model. However, the engine can be

implemented with an eXtensible Markup Language (XML) interface. VDB can be accessed

through JDBC-SQL, SOAP (Web Services), SOAP-SQL, or XQuery. This project uses the

XML for maintaining the Metadata. XML metadata containing all process, map and schema

designs integrated with a single, powerful integration engine allows tremendous flexibility

and scalability.

MAP REDUCE

MapReduce is a programming model for expressing distributed computation on massive

amount of data and an execution framework for large-scale data processing on clusters of

commodity servers[5][6]. It was originally developed by Google and built on well known

principles in parallel and distributed processing. Hadoop is the open source implementation

of MapReduce [7][8][9] written in java which provides reliable, scalable and fault tolerance

distributed computing. Hadoop environment set up involves a great number of parameters

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

4

which are crucial to achieve best performance. It allows programmers to develop distributed

applications without any distributed knowledge.

Key-value pair forms the basic data structure in MapReduce. Keys and values may be

primitives such as integers, floating point values, strings, and raw bytes or they may be

arbitrary complex structures (lists, tuples, associative array, etc.). Programmers typically need

to define their custom data types. The map function takes the input record and generates

intermediate key and value pairs. The reduce function takes an intermediate key and a set of

values to form a smaller set of values. Typically just zero or one output value is produced by

the reducer. In MapReduce, the programmer defines a mapper and reducer with the following

signature:

Map (k1, v1) → [(k2, v2)]

Reduce (k2, [v2]) → [(k3, v3)]

[….] denotes the list.

MapReduce framework is responsible for automatically splitting the input, distributing each

chunk to workers (mappers) on multiple machines, grouping and sorting all intermediate

values associated with the intermediate key, passing these values to workers (reducers) on

multiple resources, this is shown in Fig.3. Monitoring the execution of mappers and reducers

as to re-execute them when failures are detected is done by the master.

Figure: Simplified view of MapReduce

It is not uncommon for MapReduce jobs to have thousands of individual tasks that need to be

assigned to nodes in the cluster. In large jobs, the total number of tasks may exceed the

number of tasks that can be run on the clusters concurrently, making it necessary for the

scheduler to maintain some sort of a task queue and to track the progress of running tasks, so

that waiting tasks can be assigned to nodes as they become available.

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

5

IMPLEMENTATION

The goal of distributed query processing is to execute such queries as efficiently as possible

in order to minimize the response time that users must wait for answers or the time

application programs are delayed. And to minimize the total communication costs associated

with a query, to improved throughput via parallel processing, sharing of data and equipment,

and modular expansion of data management capacity. In addition, when redundant data is

maintained, one also achieves increased data reliability and improved response time. This is

achieved through introducing MapReduce with VDB.

In order to improve the performance efficiency of the VDB the Hadoop MapReduce is added

at the executor phase. The executor will pass the mapper’s sub query to the Master of the

MapReduce. The master will automatically split the input into chunks (splits) and finds M

mappers and R reducers. The splits can be processed in parallel by the mappers. Reduce

invocations are distributed by partitioning the intermediate key space into R pieces using a

partitioning function. The number of partitions (R) and partitioning functions are specified by

the user. The output of the R Reducers stored in R output files. This output files will fit our

needs. This is shown in Fig. given below. The output will be sent back to the user.

Figure: MapReduce execution flow with VDB

QUERY OPTIMIZATION

Although the parallel processing improves the efficiency of the engine, Query

optimization[11] of heterogeneous data integration is one of the key issues to be resolved

urgently, but the distribution of local data sources, autonomy, as well as the heterogeneous

nature makes it very difficult to optimize.

In VDB engine the users’ queries are decomposed into subqueries by the mapper with the

help of the Metadata manager. The engine contains more than one mapper and executor. In

distributed networks, high communication cost is the main reason of leading to low query

response time. The query response time can be improved by minimizing communication

overload and therefore improving optimizing the sub query processing.

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

6

Figure: Query Optimization

For the purpose of grouping together similar queries to same datasource, a queue is

introduced in the Execute Engine. The incoming subqueries from the Query Parser is queued

in this queue. A Query Combiner acts on this queue in a periodic interval to look for similar

queries to same data source, and groups them together. This grouped query is now sent to a

Grouped Query Queue. The MapReduce Master removes the grouped queries from this queue

and processes using different workers. This effectively optimizes the time spent in processing

and executing duplicate queries.

CONCLUSIONS

Virtual Database system is to integrate data from heterogeneous databases. But its

performance degrades when working with huge datasets. This problem is rectified by

introducing the Hadoop MapReduce with VDB. The proposed system of this paper can be

used in applications that use the VDB technology to handle huge datasets. This paper

proposes an implementation methodology for leveraging MapReduce functionality in VBD

engine. Also, it emphasizes the importance of Query optimization, i.e. grouping together of

similar queries for same datasource. In this paper a query optimization logic has been

proposed for handling similar queries with no parameters. The optimization of queries with

parameters is out of this paper’s scope and it could be taken up as a future work.

REFERENCES

[1] Asish Gupta, Venkey Harinarayan, Anand Rajaraman. Virtual Database Technology,

ACM Sigmod Record 26 (4)(1994) 57-61.

[2] Wenhao Xu, Jing Li, Yongwei Wu, Xiaomeng Huang, Guangwen Yang, VDM:

Virtual Database Management for Distributed and File System, Grid and Cooperative

Computing (2008), IEEE.

International Journal of Computer, Information Systems and Knowledge Management

Vol.1, No.1, pp.1-7, March 2014

) www.gbjournals.orgPublished by British Research Institute UK (

7

[3] Yuji Wada, Yuta Watanabe, Keisuke Syoubu, Jun Sawamoto, Takashi Katoh. Virtual

Database Technology for Distributed Database, 2010 IEEE 24th, International

Conference on Advanced Information Networking and Applications Workshop.

[4] Ferreira.R,Moura-ires,J.,Martins,R.,Pntoquilho.M., XML based Metadata Repository

for Information Systems, IEEE Artificial intelligence conference, 2005.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Google Research Publication (2004).

[6] Ralf Lammel. Google's MapReduce Programming Model Revisited.Science of

Computer Programming archive. Volume 68, (2008).

[7] Apachee Hadoop,http://Hadoop.apache.org.

[8] Hammoud, S., Maozhen Li, Yang Liu, Alham N.K., Zelong Liu. MRSim: A discrete

event based MapReduce simulator. Seventh International IEEE Conference on Fuzzy

Systems and Knowledge Discovery (FSKD), 2010.

[9] Tom White. Hadoop: The Definitive Guide. O’Reilly, Scbastopol, California, 2009.

[10] Gang Chen, Yongwei Wu, Jia Liu, Guangwen Yang and Weimin Zheng.

Optimization of subquery processing in distributed data integration systems. Journal

of Network and Computer Applications (2010).

[11] Jong-Hyun Park,Ji-Hoon Kang. Optimization of XQuery Queries including FOR

Clauses[C]// The Second nternational Conference on Internet and Web Applications

and Services. Washington DC: IEEE Computer Society, 2007:37-44.

[12] Alon Y. Levy, Anand Rajaraman, Joann J.Ordille. Querying Heterogeneous

Information Sources Using Source Descriptions [J].VLDB,1996,3(6):251-262.

