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ABSTRACT: The paper presents a method which allows the calculation of the atmospheric 

distortion of radar pules, provided that the influence of the atmosphere is to transfer the 

transmitted signal through a duct. The polarization of the primary sources, whose moment 

varies arbitrarily in time, is chosen in such a way that it allows the exact determination of the 

electric field strength at some field point above the duct layer. We can determinate the 

transient behaviour of the electric field strength at any distance above the duct.  
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INTRODUCTION 

Historically, in the problem of electromagnetic radiation from a vertical dipole situated at a 

certain height h above a plane earth, all field quantities are usually assumed to vary 

harmonically in time. Sommerfeld[1], calculated the electromagnetic radiation from an 

electric vertical dipole, located above the plane interface of two media. Many writers, 

Wait[2],Moore[3] and Durrani[4] have considered this problem, the aim of the present work 

is to extend the study-state to transient excitation when no restrictions on the distance 

between receiving and transmitting ends are made. Two integral transforms are applied to 

analyze the transient field of vertical electric dipole above a dielectric layer. The distinction 

of different cases where the distance between the receiving and transmitting ends are great 

and lesser than the total reflection distance studies by Abo-Seliem[5]. The problem has been 

studied by Arutaki and chiba[6] and Abo-Seliem[7]. This integral is estimated by using the 

steepest descent method, along the coutour    and around the branch-cuts, from the obtained 

result. The Saddle point method show that the reflected waves and integrals Abo-Seliem[8], 

the component of the electric field strength is also arbitrary for the excitation function   

t)t(F   at some fixed but arbitrary position from the point of observation in the half-space.         

 

FORMULATION OF THE PROBLEM      

As show in Fig.1, the duct model of Kahan and Eckart[9]. A dielectric layer is assumed of 

relative permittivity  1  over laying an infinitely conducting plane earth which is confined by 

the plane 0z  of a rectangular coordinate system. The source of the field is assumed to be a 

vertical electric dipole in the medium 1 at the point  0yx  , 0dz   whose moment is 

given by ))dz,y,x()t(F,0,0(~
e  ,   t being the time variable and    the three dimensional-

distribution. Regarding )t(F , we make the assumptions 0)t(F   for 0t   and 0
dt

)t(dF
   

for 0t  . 
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Fig.1: Geometric of the problem 

 

METHOD OF SOLUTION 

The starting point is the wave equation for the electrical field )t;z,y,x(E 


 in the two media: 
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where 
iv denotes the phase velocity of medium i , 

ze


is a unit vector in the z-direction. The 

application of a Laplace transform in time and two-dimensional. Fourier transform horizontal 

coordinates x,y leads under consideration of the initial boundary and transform of 

)t;z,y,x(E 


 being the variable in the transform space, we get for  zh  








































1ifor]e)
)dz(

z
)dz(s(

)dz(
z

)ee(js
)[s(f

)2(2ifor0

)s,z,,(F]s
z

[

z

u0
2

2
2

0

i0

yx)i(22

i2

2




 

 

where 1j2  , )v( 2

i

222  , 2,1i   with 0)(e i  in the medium 1. This an integral 

representation result of the Laplace transform of electric field in terms of two-dimensionals 

inverse Fourier integral. 
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 with the reflection coefficient at the upper duct boundary:  
21

21

12c



   here   and   are 

variables in the transform space of the two-dimensional Fourier transform )s(f is the Laplace 

transform )t(F . 

 

DISCUSSION OF THE INTEGRALS 

To discuss the function )s;z,y,x(E )i(

z
 which is stated in (3) from mathematical and physical 

points of view. If follows that by using polar coordinates: 

 cosx ,   siny  and 'cos , 'sin  

where   )( 222  ,  )yx( 222   and 'dddd   

The evaluation of the double integral (3) is a difficult task. Therefore, using Bessel integral 

representation: 
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where )sp(J 1  is the Bessel function of order one. 

The second term in (4) can be solved in [8], the third term will be dealt with as it represents 

the secondary field. Therefore:  





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1)i(

z )5(d)sp(J
)s(M

)s(F)s(sf
)s;z,,(E   

where )6())dh2z(sexp()())dz(sexp()()s(F 1211211   

           )7()]hs2exp()()[()s(M 121211   

To discuss the integral (5) we have to investigate the singularities in the denominator of the 

integral. The integral has four values that correspond to the four combinations of signs of 

1 and Riemann surface also has four sheets.  To insure the convergence of our integrals, we 

require that the path of integration, at infinity, 
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Fig.2: Branch cuts, the steepest descent paths and poles in the appositive -plane. 

 

 

should be on  the permissible sheet only as previously demonstrated by Kahan and Eckart[9], 

the poles, the branch cuts an the branch point which are suitable for operating the integration 

will be also determinate. We find two  branch at 
1k and 

2k  where jkv 1

i  , an 

infinity number of poles on the upper Riemann sheets Fig.(2). illustrates these two branch 

cuts and the steepest descent paths. 

Next,  )sp(J 1  is written in terms of Hankel function )sp(H )1(

1   to change the semi-infinite 

integral (5) into a fully infinite integral. 
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in (8) can be evaluated along the contour   from   to  , and its values goes around the 

poles and the branch cut Eq.(8) then takes the form:  
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where )('n  are the eigenvalues of the poles of the integral and k is the solution of the poles 

equation. 

)10(0)]h)s(s2exp())s()s(())s()s()[(s()s(M k1k2k1k2k1k11      

in the first term of (9), substituting the value k . 
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Next, we can estimate the second term in (9) by using Saddle-point method. The Hankel 

function can be transformed into the asymptote expansions as is well known[8] 
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s for the integral is determinated by[9]. 
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Then, the integral (15) is evaluated as follows: 
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If the height duct is h=20m and the difference of relative permutations in the boundary 
410.4  ,the height of the primary source and the point of observation are taken as 

z=d=15m ,the 00033.1

2

1

1


v
v

n  ,if r=4000m. 

Figures describes the relationship between Im׀y ׀  and t at    t < 6 x 10 
-3 

 s .The absolute value 

of the z-component of the electric field strength  increasing with increase the time . The 

absolute value of the z-component of the electric field strength is increasing when the 

spherical distance between the source and the point of observation is very small.( E
R

1
 ). 

We note that The absolute value of the of the electric field strength is dependent of  R . At   t > 
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6 x 10 
-3 

s .The absolute value of the electric field strength  is constant for each values of R = 

5 km ,10 km, 15 km , 20 km and  25 km .  

We note that :-  the saturation curve when the time increase.                                                             

 

Figure (3): describes the relationship between Log ׀Abs׀y׀׀and t. 

1- At time < 5 x 10
-3 

s .The value of Log of the electric field strength is negative (-ve) 

value  . 

2- At  time(t) < 6x 10
-3 

s  . Log value of the electric field strength increasing by increase 

the time  . 

3- At  time(t) >  6x 10
-3 

s  . Log value of the electric field strength is constant (+ve) for 

all value of . 

 

Fig.(3) describes the relationship between Abs[y]and t 
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CONCLUSION   

A theoretical study for computing the electromagnetic field from a Hertizan vector in the 

ionosphere is presented. The solution is valid for arbitrary distances between receiving and 

transmitting ends for a source position. The Saddle point method is used to compute the 

problem. 
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